829 research outputs found

    Video object tracking using region split and merge and a Kalman filter tracking algorithm

    Get PDF

    Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

    Get PDF
    Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study

    Mathematics difficulties in extremely preterm children : evidence of a specific deficit in basic mathematics processing

    Get PDF
    Background: Extremely preterm (EP, <26 wk gestation) children have been observed to have poor academic achievement in comparison to their term-born peers, especially in mathematics. This study investigated potential underlying causes of this difficulty. Methods: A total of 219 EP participants were compared with 153 term-born control children at 11 y of age. All children were assessed by a psychologist on a battery of standardized cognitive tests and a number estimation test assessing children’s numerical representations. Results: EP children underperformed in all tests in comparison with the term controls (the majority of Ps < 0.001). Different underlying relationships between performance on the number estimation test and mathematical achievement were found in EP as compared with control children. That is, even after controlling for cognitive ability, a relationship between number representations and mathematical performance persisted for EP children only (EP: r = 0.346, n = 186, P < 0.001; control: r = 0.095, n = 146, P = 0.256). Conclusion: Interventions for EP children may target improving children’s numerical representations in order to subsequently remediate their mathematical skills

    Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria

    Persistence and compliance to antidepressant treatment in patients with depression: A chart review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adherence has recently been suggested to be divided into these two components: persistence (i.e., whether patients continue treatment or not) and compliance (i.e., whether patients take doses as instructed). However, no study has yet assessed these two clinically relevant components at the same time in adherence to antidepressant treatment in the clinical outpatient setting.</p> <p>Methods</p> <p>In this retrospective chart-review, 6-month adherence to antidepressants was examined in 367 outpatients with a major depressive disorder (ICD-10) (170 males; mean ± SD age 37.6 ± 13.9 years), who started antidepressant treatment from April 2006 through March 2007. Additionally, we evaluated Medication Possession Rate (MPR), defined as the total days a medication was dispensed to patients divided by the treatment period.</p> <p>Results</p> <p>Only 161 patients (44.3%) continued antidepressant treatment for 6 months. Among 252 patients who discontinued their initial antidepressant, 63.1% of these patients did so without consulting their physicians. Sertraline use was associated with a higher persistence rate at month 6 (odds ratio 2.59 in comparison with sulpiride), and the use of anxiolytic benzodiazepines had a positive effect on persistence to antidepressant treatment only at month 1 (odds ratio 2.14). An overall MPR was 0.77; 55.6% of patients were considered compliant (i.e., a MPR of ≥ 0.8).</p> <p>Conclusion</p> <p>Given a high rate of antidepressant discontinuation without consulting their physicians, closer communication between patients and their physicians should be encouraged. Although the use of anxiolytic benzodiazepines was associated with a higher persistence to antidepressant treatment at month 1, the use of these drugs should be avoided as a rule, given their well-known serious adverse effects.</p

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    The Genetics of Adaptation for Eight Microvirid Bacteriophages

    Get PDF
    Theories of adaptive molecular evolution have recently experienced significant expansion, and their predictions and assumptions have begun to be subjected to rigorous empirical testing. However, these theories focus largely on predicting the first event in adaptive evolution, the fixation of a single beneficial mutation. To address long-term adaptation it is necessary to include new assumptions, but empirical data are needed for guidance. To empirically characterize the general properties of adaptive walks, eight recently isolated relatives of the single-stranded DNA (ssDNA) bacteriophage φX174 (family Microviridae) were adapted to identical selective conditions. Three of the eight genotypes were adapted in replicate, for a total of 11 adaptive walks. We measured fitness improvement and identified the genetic changes underlying the observed adaptation. Nearly all phages were evolvable; nine of the 11 lineages showed a significant increase in fitness. However, fitness plateaued quickly, and adaptation was achieved through only three substitutions on average. Parallel evolution was rampant, both across replicates of the same genotype as well as across different genotypes, yet adaptation of replicates never proceeded through the exact same set of mutations. Despite this, final fitnesses did not vary significantly among replicates. Final fitnesses did vary significantly across genotypes but not across phylogenetic groupings of genotypes. A positive correlation was found between the number of substitutions in an adaptive walk and the magnitude of fitness improvement, but no correlation was found between starting and ending fitness. These results provide an empirical framework for future adaptation theory

    Temporal variation in sex allocation in the mealybug <em>Planococcus citri</em>:Adaptation, constraint, or both?

    Get PDF
    Sex ratio theory has been very successful in predicting under which circumstances parents should bias their investment towards a particular offspring sex. However, most examples of adaptive sex ratio bias come from species with well-defined mating systems and sex determining mechanisms, while in many other groups there is still an on-going debate about the adaptive nature of sex allocation. Here we study the sex allocation in the mealybug Planococcus citri, a species in which it is currently unclear how females adjust their sex ratio, even though experiments have shown support for facultative sex ratio adjustment. Previous work has shown that the sex ratio females produce changes over the oviposition period, with males being overproduced early and late in the laying sequence. Here we investigate this complex pattern further, examining both the robustness of the pattern and possible explanations for it. We first show that this sex allocation behaviour is indeed consistent across lines from three geographical regions. Second, we test whether females produce sons first in order to synchronize reproductive maturation of her offspring, although our data provide little evidence for this adaptive explanation. Finally we test the age at which females are able to mate successfully and show that females are able to mate and store sperm before adult eclosion. Whilst early-male production may still function in promoting protandry in mealybugs, we discuss whether mechanistic constraints limit how female allocate sex across their lifetime

    Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Get PDF
    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9(T), was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9(T) is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448(T). The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9(T) (=NCIMB 14965(T)=NRRL B65268(T)). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-017-0838-2) contains supplementary material, which is available to authorized users

    Molecular Epidemiology of Campylobacter Isolates from Poultry Production Units in Southern Ireland

    Get PDF
    This study aimed to identify the sources and routes of transmission of Campylobacter in intensively reared poultry farms in the Republic of Ireland. Breeder flocks and their corresponding broilers housed in three growing facilities were screened for the presence of Campylobacter species from November 2006 through September 2007. All breeder flocks tested positive for Campylobacter species (with C. jejuni and C. coli being identified). Similarly, all broiler flocks also tested positive for Campylobacter by the end of the rearing period. Faecal and environmental samples were analyzed at regular intervals throughout the rearing period of each broiler flock. Campylobacter was not detected in the disinfected house, or in one-day old broiler chicks. Campylobacter jejuni was isolated from environmental samples including air, water puddles, adjacent broiler flocks and soil. A representative subset of isolates from each farm was selected for further characterization using flaA-SVR sub-typing and multi-locus sequence typing (MLST) to determine if same-species isolates from different sources were indistinguishable or not. Results obtained suggest that no evidence of vertical transmission existed and that adequate cleaning/disinfection of broiler houses contributed to the prevention of carryover and cross-contamination. Nonetheless, the environment appears to be a potential source of Campylobacter. The population structure of Campylobacter isolates from broiler farms in Southern Ireland was diverse and weakly clonal
    corecore